欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
会议
> 会议详情页
Which Looks Like Which: Exploring Inter-Class Relationships in Fine-Grained Visual Categorization
所属机构名称:复旦大学
会议名称:European Conference on Computer Vision (ECCV)
时间:2014.9.6
成果类型:会议
相关项目:海量网络视频中的复杂事件检测技术研究
同会议论文项目
海量网络视频中的复杂事件检测技术研究
期刊论文 4
会议论文 18
同项目会议论文
Real-Time Summarization of User-Generated Videos Based on Semantic Recognition
Fudan-NJUST at MediaEval 2014: Violent Scenes Detection Using Deep Neural Networks
VSD2014: A Dataset for Violent Scenes Detection in Hollywood Movies and Web Videos
Understanding and Predicting Interestingness of Videos
Multiple Task Learning Using Iteratively Reweighted Least Square
Challenge Huawei Challenge: Fusing Multimodal Features with Deep Neural Networks for Mobile Video An
Optimal Bayesian Hashing for Efficient Face Recognition
EvaluatingTwo-Stream CNN for Video Classification
Modeling Spatial-Temporal Clues in a Hybrid Deep Learning Framework for Video Classification
Fudan-Huawei at MediaEval 2015: Detecting Violent Scenes and Affective Impact in Movies with Deep Le
Predicting Emotions in User-Generated Videos
Benchmarking Violent Scenes Detection in Movies
VCDB: A Large-Scale Database for Partial Copy Detection in Videos
Exploring Inter-feature and Inter-class Relationships with Deep Neural Networks for Video Classifica
Beauty is Here: Evaluating Aesthetics in Videos Using Multimodal Features and Free Training Data
Organizing Video Search Results to Adapted Semantic Hierarchies for Topic-based Browsing
Fudan at MediaEval 2013: Violent Scenes Detection Using Motion Features and Part-Level Attributes