欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
会议
> 会议详情页
基于反馈控制策略的多智能体蜂拥控制
所属机构名称:江南大学
会议名称:2012 中国过程控制会议 (CPCC 2012)
时间:2012.8.11
成果类型:会议
相关项目:基于分布参数系统的移动传感器网络协同控制与应用研究
作者:
娄柯|齐斌|穆文英|崔宝同|
同会议论文项目
基于分布参数系统的移动传感器网络协同控制与应用研究
期刊论文 44
会议论文 27
获奖 2
同项目会议论文
Quantized communication of multi-agent systems under switching topology
Stabilization analysis of stochastic Hopfield neural networks
Quantized feedback control for hybrid impulsive systems
Periodicity analysis of uncertain neural networks with multiple time-varying delays
Robust sampled-data control of a class of distributed parameter systems using mobile actuator-sensor
Observer-based control for state estimation of uncertain fuzzy neural networks with time-varying del
Observer-based synchronization of networked distributed parameter systems
Consensus of second-order multi-agent systems with asynchronous communication topology
Robust observer-based fault estimation of switched systems
A delay decomposition approach to absolute stability of Lurie control system with time-varying delay
Quantized communication of multi-agent systems under switching topology
基于反馈控制策略的多智能体蜂拥控制
Exponential stability of a class of high-order hybrid neural networks
一类含分布时滞动态网络的指数稳定性
A delay-decomposition approach to consensus of multi-agent network with time-varying delay
Mean square exponential stability of hybrid neural networks with uncertain switching probabilities
Mobile sensor networks for sampled-data control of a class of distributed parameter systems
Improved control of distributed parameter systems with time-varying delay based on mobile actuator-s
Quantized communication of multi-agent systems under switching topology
Exponential stability of a class of high-order hybrid neural networks
Quantized communication of multi-agent systems under switching topology
基于反馈控制策略的多智能体蜂拥控制
Exponential stability of a class of high-order hybrid neural networks
Quantized communication of multi-agent systems under switching topology
基于反馈控制策略的多智能体蜂拥控制
Exponential stability of a class of high-order hybrid neural networks