欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
会议
> 会议详情页
基于LDA模型的文本聚类研究
所属机构名称:华中师范大学
会议名称:全国第十一届计算语言学学术会议(CNCCL-2011)
成果类型:会议
相关项目:汉语语义知识获取与语义计算模型研究
作者:
董婧灵|李芳|何婷婷|涂新辉|万剑|
同会议论文项目
汉语语义知识获取与语义计算模型研究
期刊论文 15
会议论文 26
获奖 2
同项目会议论文
A probabilistic topic-connection model for automatic image annotation
Using Topic-Concept Based Clustering for Genomic Information Retrieval in TREC
Modeling Semantic Relations between Visual Attributes and Object Categories via Dirichlet Forest Pri
Perspective hierarchical dirichlet process for user-tagged image modeling
Probabilistic Topic Modeling for Genomic Data Interpretation
The Topic-Perspective Model for Social Tagging Systems
Tag Recommendation Based on Tag-Topic Model.International Conference on Cloud Computing and Intellig
Document Relevance Identifying and Its Effect in Query-Focused Text Summarization
Research on Sentiment Classification of Blog Based on PMI-IR
Using Maximum Entropy Model for Concept-Based Genomic Information Retrieval
Improving Diversity of Focused Summaries Through The Negative Endorsements of Redundant Facts
Multi-View Sentence Ranking for Query-Biased Summarization
Pseudo-relevance feedback query based on Wikipedia
User Influence Analysis on Micro Blog
Emotion Analysis in Blogs at Sentence Level Using a Chinese Emotion Corpus
Discriminative Novel Information Detection of Query-Focused Update Summarization
Co-HITS-Ranking Based Query-Focused Multi-Document Summarization
Wikipedia-Based Semantic Smoothing for the Language Modeling Approach to Information Retrieval
Answer Diversification for Complex Question Answering on the Web
Obtaining Chinese Semantic Knowledge from Online Encyclopedia
Author-Conference Topic-Connection Model for Academic Network Search
Boosting Naive Bayes Text Categorization by Using Cloud Model
Inferring Functional Groups from Microbial Gene Catalogue with Probabilistic Topic Models
Incorporating Word Correlation into Tag-Topic Model for Semantic Knowledge Acquisition.
Application of Polar Similarity Computing in Words Orientation Identification