位置:成果数据库 > 期刊 > 期刊详情页
Autofocus technique for ISAR imaging of uniformly rotating targets based on the ExCoV method
  • ISSN号:1004-4132
  • 期刊名称:《系统工程与电子技术:英文版》
  • 时间:0
  • 分类:N945[自然科学总论—系统科学]
  • 作者机构:[1]Institute of Space Electronic Technology, School of Electronic Science and Engineering,National University of Defense Technology, Changsha 410073, China
  • 相关基金:This work was supported by the National Natural Science Foundation (61302148).
中文摘要:

The inverse synthetic aperture radar (ISAR) imaging can be converted into a sparse reconstruction problem and solved by the l1-norm minimization algorithm. The basis matrix in sparse ISAR imaging is usually characterized by the unknown rotation rate of a moving target, thus the rotation rate and the sparse signal should be jointly estimated. Especially due to the imperfect coarse motion compensation, we consider the phase error correction problem in the context of the sparse signal reconstruction. To address this issue, we propose an iterative reweighted method,which jointly estimates the rotation rate, corrects the phase error and reconstructs a high resolution ISAR image. The proposed method gives a gradual and interweaved iterative process to refine the unknown parameters to achieve the best sparse representation for the ISAR signals. Particularly, in ISAR image reconstruction,the l1-norm minimization algorithm is sensitive to user parameters.Setting these user parameters are not trivial and the reconstruction performance depends significantly on their choices. Then, we consider an expansion-compression variance-component (ExCoV) based method, which is automatic and demands no prior knowledge about signal-sparsity or measurement-noise levels. Both numerical and electromagnetic data experiments are implemented to show the effectiveness of the proposed method. It is shown that the proposed method can estimate the rotation rate and correct the phase errors simultaneously, and its superior performance is proved in terms of high resolution ISAR image.

英文摘要:

The inverse synthetic aperture radar (ISAR) imaging can be converted into a sparse reconstruction problem and solved by the l1norm minimization algorithm. The basis matrix in sparse ISAR imaging is usually characterized by the unknown rotation rate of a moving target, thus the rotation rate and the sparse signal should be jointly estimated. Especially due to the imperfect coarse motion compensation, we consider the phase error correction problem in the context of the sparse signal reconstruction. To address this issue, we propose an iterative reweighted method, which jointly estimates the rotation rate, corrects the phase error and reconstructs a high resolution ISAR image. The proposed method gives a gradual and interweaved iterative process to refine the unknown parameters to achieve the best sparse representation for the ISAR signals. Particularly, in ISAR image reconstruction, the l1norm minimization algorithm is sensitive to user parameters. Setting these user parameters are not trivial and the reconstruction performance depends significantly on their choices. Then, we consider an expansion-compression variance-component (ExCoV) based method, which is automatic and demands no prior knowledge about signal-sparsity or measurement-noise levels. Both numerical and electromagnetic data experiments are implemented to show the effectiveness of the proposed method. It is shown that the proposed method can estimate the rotation rate and correct the phase errors simultaneously, and its superior performance is proved in terms of high resolution ISAR image. ? 2017 Beijing Institute of Aerospace Information.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《系统工程与电子技术:英文版》
  • 主管单位:中国航天机电集团
  • 主办单位:中国航天工业总公司二院
  • 主编:高淑霞
  • 地址:北京海淀区永定路52号
  • 邮编:100854
  • 邮箱:jseeoffice@126.com
  • 电话:010-68388406 68386014
  • 国际标准刊号:ISSN:1004-4132
  • 国内统一刊号:ISSN:11-3018/N
  • 邮发代号:82-270
  • 获奖情况:
  • 航天系统优秀期刊奖,美国工程索引(EI)和英国科学文摘(SA)收录
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),英国科学文摘数据库
  • 被引量:242