研究了(2+1)维色散长波方程的非局域对称性和相容Riccati展开(CRE)可积性.首先,通过Painlev6分析中的留数对称,将(2+1)维色散长波方程留数对称局域化,得到了与Schwartzian变量相对应的对称群;其次,基于CRE方法,证明了(2+1)维色散长波方程在CRE条件下是可积的;最后,通过求解相容性方程,构造了该方程的孤立波与椭圆周期波的相互作用解.
For the (2+1)-dimensional dispersive long-wave system, the truncated Painlev5 method is developed to obtain the nonlocal residual symmetry. Moreover, the symmetry group transformation can compute from the extended system. At the same time, the (2+l)-dimensional dispersive long-wave system is proved to be consistent Riccati expansion (CRE) solvable. With the help of the Riccati equation and the CRE method, we obtain a soliton-cnoidal wave interaction solution to the equation.