应用相对论密度泛函理论系统研究了水溶液中非水合化和水合化碳酸铀酰化合物Cn/m(其中n和m分别为结构中碳酸配体和水配体的个数)的结构.溶剂效应采用类导体屏蔽模型(COSMO),并采用零级规整近似(ZORA)方法考虑标量相对论效应和旋-轨耦合相对论效应.电子跃迁采用包含旋-轨耦合相对论效应的含时密度泛函理论并在相关交换势中采用轨道势能统计平均(SAOP)做近似计算.结果表明碳酸配体对配合物结构和电子跃迁有很大的影响.C3/0配合物的稳定性可归于5f轨道参与了高占据轨道的成键作用.增加碳酸盐配体导致最大波长的蓝移,并在近可见光区域出现高强度的吸收.
A systematic study of series of non-hydrated and hydrated Cn/m uranyl carbonate complexes (n is number of carbonate ligands,and m is number of water molecules)in the aqueous phase was carried out using relativistic density functional theory.The conductor-like screening model was used to calculate solvent effects.The zeroth-order regular approximation was used to account for scalar relativistic effects and spin-orbit coupling relativistic effects.Time-dependent density functional theory with the inclusion of spin-orbit coupling relativistic effects was used to calculate electronic transitions using the statistically averaged orbital potentials.The results indicate that carbonate ligands play an important role in the geometric and electronic transition properties of the complex.The stability of the C3/0 carbonate complex in the aqueous phase may be attributed to the involvement of 5f components in the highest occupied bonding orbital.The addition of carbonate ligands caused a blue shift in the maximum wavelength and high intensity absorptions in the near visible region.