位置:成果数据库 > 期刊 > 期刊详情页
考虑端元差异性的协同稀疏高光谱解混算法
  • ISSN号:1001-0548
  • 期刊名称:《电子科技大学学报》
  • 时间:0
  • 分类:TP751.1[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]西南交通大学信息科学与技术学院,成都610031
  • 相关基金:国家自然科学基金(61371165); 教育部新世纪优秀人才支持计划(NCET-11-0711); 四川省青年科技创新研究团队“轨道交通信息传输与处理技术”(2011JTD0007); 中央高校基本科研业务费(SWJTU11CX038,SWJTU12CX004,SWJTU12ZT02)
中文摘要:

因现有的高光谱协同稀疏解混模型忽略了不同像元所包含端元的差异性,影响到丰度估计的准确性。该文提出一种先对具有相同端元的像元进行无监督聚类的预处理,然后对预处理后的不同类高光谱像元进行协同稀疏解混算法。在无监督聚类过程中,由于具有相同原子集合的像元之间的协同稀疏编码值最小,将重构误差与协同稀疏编码约束之和作为距离测度,从而有效保证了同类像元中具有相同端元;再利用基于ADMM的优化算法对每类像元分别进行协同稀疏解混。仿真和实际高光谱数据实验结果表明,该算法能有效地进行真实端元识别,从而提高了丰度估计的准确性。

英文摘要:

In the current collaborative sparse unmixing of hyperspectral data, the fractional abundances can not be estimated accurately due to ignoring the differences of endmembers among different pixels. In this paper, a novel unsupervised clustering method is proposed as a preprocessing step to generate several classes of pixels with the same endmember bundles, and then for each class, the collaborative sparse unmixing technique is used to implement spectral unmixing. In terms that the pixels with the same set of active atoms have the smallest values of collaborative sparse coding, the sum of reconstruction errors and sparsity levels are introduced as the distance metric in the unsupervised clustering. As such, the same class pixels can be guaranteed to contain the same endmembers. Finally, the involving optimization problem can be solved by using the algorithm of alternating direction method of multipliers (ADMM). Experimental results on synthetic and real hyperspectral data demonstrate that the our proposed algorithm can identify the actual endmembers effectively and improve the accuracy of the fractional abundance estimation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子科技大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:电子科技大学
  • 主编:周小佳
  • 地址:成都市成华区建设北路二段四号
  • 邮编:610054
  • 邮箱:xuebao@uestc.edu.cn
  • 电话:028-83202308
  • 国际标准刊号:ISSN:1001-0548
  • 国内统一刊号:ISSN:51-1207/T
  • 邮发代号:62-34
  • 获奖情况:
  • 全国优秀科技期刊,第二届全国优秀科技期刊二等奖,两次获国家新闻出版署、国家教委“全国高校自然科...,中国期刊方阵双百期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12314