位置:成果数据库 > 期刊 > 期刊详情页
海量信息融合方法及其在状态评价中的应用
  • ISSN号:1000-9825
  • 期刊名称:软件学报
  • 时间:2014.9.1
  • 页码:2026-2036
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]吉林大学计算机科学与技术学院,吉林长春130012, [2]符号计算与知识工程教育部重点实验室吉林大学,吉林长春130012
  • 相关基金:国家自然科学基金(61133011,61170092,60973088,61202308);国家高技术研究发展计划(863)(2011AA010101);吉林省重点科技攻关项目(20130206046GX)
  • 相关项目:基于关系Markov网的多关系数据聚类分析方法研究
中文摘要:

针对证据理论无法有效处理海量信息融合的不足,提出一种结合聚类和凸函数证据理论的海量信息融合方法,旨在解决状态评价等普遍而重要的应用问题。该方法首先基于聚类算法 BIRCH 对采集的海量信息进行预处理,形成多个簇;然后,针对状态评估类问题所用数据大多为数值数据和序数数据这一特点,计算每个簇的质心,并将其作为该簇的代表信息,基于广义三角模糊隶属函数对每个质心信息进行基本概率指派形成证据;最后,基于凸函数证据理论完成各证据的组合,从而完成了海量信息的融合。仿真实验结果表明:该方法既高效又合理地融合了海量信息,为海量信息融合技术的发展提供了一条探索途径。

英文摘要:

To solve the problem that the evidence theory can’t efficiently deal with the fusion of massive information, a new method combining clustering and the convex evidence theory is put forward. The method aims to solve the common and important application problems of the status evaluation. First, the famous clustering algorithm BIRCH is performed to pre-process the data, generating multiple clusters. Second, the centroid of each cluster is calculated as the representation of the cluster pertaining to the fact that most data used for status evaluation have numeric attribute or ordinal attribute. Then, to form the evidence provided by the information in each cluster, the centroid information is given a basic probability assignment value based on the generalized triangular fuzzy membership function. Finally, evidences are combined according to the combination rule of the convex evidence theory. As a result, the massive information fusion is achieved. The results of simulation experiment show that the presented method can efficiently and reasonably perform the massive information fusion, providing a new way to improve the massive information fusion techniques.

同期刊论文项目
期刊论文 99 会议论文 6
期刊论文 80 会议论文 27 专利 1
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609