该文对求解非线性耦合Schrǒdinger方程的Sonnier—Christov格式进行了数值分析,证明了格式关于L2范数的稳定性和二阶收敛性,运用Brouwer不动点定理证明了差分解的存在唯一性,给出一个求解非线性差分方程组的迭代算法并证明了算法的收敛性,最后对双孤立波的碰撞进行了模拟.
In this paper, numerical analysis of the Sonnier-Christov's difference scheme for the coupled nonlinear Schrǒdinger system is given, we prove that the difference scheme is unconditional stable and the second-order convergent in discrete L2-norm. Unique existence of the numerical solution and a iterative algorithm are also discussed in detail. Collision of two solitary waves is also simulated.