位置:成果数据库 > 期刊 > 期刊详情页
基于CCA的图像语义特征提取的分析与研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]安徽大学计算机科学与技术学院,合肥230601, [2]合肥师范学院计算机科学与技术系,合肥230061
  • 相关基金:安徽省自然科学基金资助项目(11040606M134); 安徽省高校自然科学基金重点资助项目(KJ2009A150)
中文摘要:

为了提高图像语义特征提取的精确度,克服目前大部分图像语义特征提取算法中,因图像特征提取不当,导致特征参数不能全面反映图像语义的问题,提出了一种基于典型相关分析(CCA)的特征融合的图像语义特征提取方法。该方法首先采用圆形对称邻域取代传统的矩形邻域的方法,对局部二值模式(LBP)纹理特征进行了改进,然后采用高维小样本下典型相关分析对可伸缩颜色描述算子的颜色特征和改进的LBP纹理特征进行特征融合。实验结果表明,所提出的方法明显提高了图像语义特征提取的精确度,能有效地建立图像的低层特征与语义特征间的一致性。

英文摘要:

For the purpose of have a better accuracy of image semantic feature extraction,overcome the problem that in most image semantic feature extraction algorithms,due to the improper extraction of image semantic feature,lead to the problem of feature parameters can not fully reflect the image semantic,this paper proposed an image semantic extraction algorithm based on canonical correlation analysis and feature fusion.In the proposed method,using the circular symmetric neighborhood,instead of the traditional method of rectangular neighborhood firstly,improved the local binary patterns(LBP) texture feature descriptor.Then,the work was feature fusion between the scalable color descriptor color feature and improved LBP texture feature using canonical correlation analysis under high dimension small sample.Experimental results show that the proposed method significantly improves the accuracy of image semantic feature extraction,creates the consistency between low-level features and high-level semantic effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049