位置:成果数据库 > 期刊 > 期刊详情页
基于双尺度SIFT描述符及搜索区域限制的图像匹配算法
  • ISSN号:0490-6756
  • 期刊名称:《四川大学学报:自然科学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]四川大学计算机学院,成都610065
  • 相关基金:国家自然科学基金(61471250)
中文摘要:

针对尺度不变特征变换(SIFT)算法的匹配结果存在大量的错误匹配点对,提出一种基于双尺度SIFT描述符及搜索区域限制的图像匹配算法(DSLSR-SIFT).该方法使用双尺度描述符来计算初始匹配点集,然后加入局部搜索区域限制条件在初始匹配点集中剔除偏离区域限制条件较大的点对从而得到提炼的匹配结果.最后,利用随机抽样一致性(RANSAC)算法进行评估两种算法的匹配结果.实验结果表明,本方法比SIFT算法在匹配正确率上平均提高了17%左右,显著地提高了匹配精度.

英文摘要:

Since the matching result of scale invariant feature transform(SIFT)algorithm has many false matching points,a image matching algorithm based on SIFT descriptors with double scales and limited searching region(DSLSR-SIFT)is proposed.The method uses double scales descriptors to calculate the preliminary matching points set,then local limited searching region condition is added in the preliminary matching points set to remove the points which are far away from the limited region condition and obtains refined matching result.Finally,the random sample consensus(RANSAC)algorithm is used to evaluate the matching results.Experiment results show that the correct rate of this algorithm is better than SIFT algorithm on average of about 17%,which significantly improves the matching accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《四川大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:四川大学
  • 主编:刘应明
  • 地址:成都九眼桥望江路29号
  • 邮编:610064
  • 邮箱:
  • 电话:028-85410393 85412393
  • 国际标准刊号:ISSN:0490-6756
  • 国内统一刊号:ISSN:51-1595/N
  • 邮发代号:62-127
  • 获奖情况:
  • 国家“双效”期刊,四川省十佳科技期刊,教育部全国高校优秀学报二等奖(1995,1999),四川省科技优秀期刊一等奖(1996,2000)
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国生物科学数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10542