Г(x):=∫0∞e-ttx-1dt,x〉0为gamma函数。设f(x):=logГ(x)+logГ(1-x),x∈Q(0,1/2]。证明如果存在有理数y0∈Q(0,1/2],使得f(y0)=logГ(y0)+logГ(1-y0)∈Q,则集合{eαπ|α∈Q}中恰好有一个代数数,即e-f(y0)π,且e-f(y0)π=sinπy0。
The gamma function is defined as Г(x):=∫0∞e-ttx-1dt,x〉0. Let f(x):=logГ(x)+logГ(1-x),x∈Q(0,1/2] .It is shown that if there exists a rational number y0∈Q(0,1/2] such that f(y0)=logГ(y0)+logГ(1-y0)∈Q, then there is precisely one algebraic element in the set {eαπ|α∈Q},which is e-f(y0)π,and e-f(y0)π=sinπy0.