位置:成果数据库 > 期刊 > 期刊详情页
基于LSSVM的MIMO系统快速在线辨识方法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP273[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]湖南大学电气与信息工程学院,长沙410082, [2]中南大学信息科学与工程学院,长沙410075, [3]中南大学物理科学与技术学院,长沙410075
  • 相关基金:基金项目:国家自然科学基金资助项目(60872128);国家技术创新基金资助项目(07C26214301740).
中文摘要:

针对时变非线性多输入多输出(MIMO)系统在线辨识较困难的问题,提出一种基于最小二乘支持向量机(LSSVM)的快速在线辨识方法。介绍了现有LSSVM增量式和在线式学习算法,并为它引入了一些加速实现策略,得到LSSVM快速在线式学习算法。将MIMO系统分解为多个多输入单输出(MISO)子系统,对每一个MISO利用一个LSSVM在线建模;这些LSSVM执行快速在线式学习算法。数字仿真显示该方法建模速度快,模型预测精度高。

英文摘要:

To tackle the difficulty in identifying time-varying nonlinear Multi-Input Multi-Output (MIMO) system online, a fast online system identification approach based on Least Squares Support Vector Machine (LSSVM) was proposed. The existing LSSVM incremental and online learning algorithms were introduced, and some speeding up implementing tactics were designed and adopted in the algorithm; consequently, a fast online LSSVM learning algorithm was obtained. MIMO system was decomposed into multiple Multi-Input Single-Output (MISO) subsystems, and each MISO was modeled online via a LSSVM. The numerical simulation shows the modeling method is faster and the obtained models provide accurate prediction.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679