微波诱导光学核极化(Microwave-InducedOpticalNuclearPolarization,MIONP)技术利用光激发三重态样品来极化电子,再用微波将处于非热平衡态的电子极化转移到待检测原子核,将原子核的检测灵敏度提高几个量级甚至更多.这种灵敏度极化增强方法可以用来进行蛋白质结构和动力学检测、光化学和光物理进程的基础研究、量子计算和低场核磁共振(Low-fieldNuclearMagneticResonance,Low-fieldNMR)与磁共振成像(MagneticResonanceImaging,MRI)应用研究.该文简要分析了MIONP的物理原理及其在核极化增强中的优势,结合实验条件综述了一些重要的成果.最后,对微波诱导光学核极化的前景作了展望.
Microwave-induced optical nuclear polarization(MIONP)can enhance nuclear spin polarization by several borders of magnitude.In MIONP,non-equilibrium electronic polarization was first enhanced through photo-excited triplet states,which is then transferred to nuclei by microwave irradiation.The potential applications of MIONP include probing structure and dynamics of proteins,studies of photochemical and photophysical processes,quantum computing and low-field NMR/MRI.In this review,we introduce the principles of MIONP and its application in nuclear polarization enhancement.The experimental setups,recent progresses,novel applications and future possibilities of MIONP are discussed.