位置:成果数据库 > 期刊 > 期刊详情页
基于分而治之的快速多维尺度定位算法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP393.1[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]苏州大学计算机科学与技术学院,江苏苏州215000, [2]常熟理工学院计算机科学与工程学院,江苏常熟215500
  • 相关基金:国家自然科学基金(No.61300186);校科研项目(No.XZ1301);苏州市物联网工程应用重点实验室项目(No.SZS201407).
中文摘要:

传统MDS-MAP算法通过同时提取网络中所有节点间距离信息的特征来实现定位,计算时间复杂度相对较高,影响了算法的定位速度。针对该问题,提出了基于分而治之的快速多维尺度定位算法DMDS-MAP,剔除参与转换的冗余数据,可有效提高原始MDS-MAP算法的定位速度。DMDS-MAP算法将距离矩阵进行划分,选取对角阵作为子矩阵以剔除冗余数据,通过奇异值分解从各子矩阵中提取指定维数的特征转化为相对坐标,融合由各子矩阵求得节点的相对坐标,得到所有节点的相对坐标,最后,根据锚节点坐标信息得到所有节点的全局绝对坐标。实验结果表明,在定位精度相似的情况下,随着参与运算的节点密度的增加,DMDS-MAP算法较MDS-MAP算法在运行时间上有明显的提升。

英文摘要:

Due to traditional MDS-MAP algorithm extracts the distance information from all the nodes in the network, it’stime complexity will be very high that hinders the speed of the positioning. To solve this problem, this paper proposes theDMDS-MAP localization algorithm which based on divide and conquer with traditional MDS-MAP, it can effectivelyimprove the positioning speed through eliminating the redundant data. By DMDS-MAP algorithm, the distance matrix isdivided into several sub matrices, then using singular value decomposition to decompose and extract the feature of the submatrices in specified dimension to obtain it’s relative coordinates, next melt results of each sub distance matrix to get allnodes’relative coordinates, at last global absolute coordinates are obtained through the anchor node. The experimentalresults indicate that with the similar positioning accuracy, as the increase of density of nodes which participating in thetransform, compared with DMDS-MAP algorithm, MDS-MAP algorithm has significant improvement in running time.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887