为不稳定的成穴的计算的一个本地旋涡的成穴(LVC ) 模型被建议。模型从 Rayleigh-Plesset 方程被导出,并且考虑在成穴水泡半径和本地旋涡的效果之间的关系。在一只 Clark-Y 水翼船附近的不稳定的云 cavitating 流动的计算被执行用记录得好的试验性的数据估计 LVC 模型的预兆的能力。与常规 Zwarts 模型相比,更好的同意在 LVC 模型和试验性的数据的预言之间被观察,包括平均时间的流动结构,即时洞形状和流进程的云洞的频率的大小。基于 LVC 模型的预言,蒸发过程大部分在前缘的核心区域专注,这被表明根据在依附的洞的生长的涡度,和冷凝作用过程在后面的边涡度的核心区域专注,它对应于依附的洞的后面的部件的传播。当依附的洞下游地拆散并且移动时,冷凝作用区域充分搬运到 wake 区域,它根据分开的洞的驱散。用涡度运输方程,而且,我们也发现周期的形成,决裂,并且表 / 云洞流与联系 baroclinic 转矩一起,是为涡度生产和修正的重要机制。当依附的洞成长时,向后面的边移动的液体蒸汽接口在依附的洞闭合区域提高涡度。作为在上游的重入的喷气行动,起浪 / 冒泡的洞接口在后面的边附近提高涡度。在周期的结束,稳定的依附的洞的分散是为吸表面附近的涡度改进的主要原因。为不稳定的成穴的计算的图形的 AbstractA 本地旋涡的成穴(LVC ) 模型被建议。模型从 Rayleigh-Plesset 方程被导出,并且考虑在成穴水泡半径和本地旋涡的效果之间的关系。与常规 Zwarts 模型相比,更好的同意在 LVC 模型和试验性的数据的预言之间被观察,包括流过程的云洞的平均时间的流动结构,即时洞形状,和频率的大小。
A local vortical cavitation(LVC) model for the computation of unsteady cavitation is proposed.The model is derived from the Rayleigh–Plesset equations,and takes into account the relations between the cavitation bubble radius and local vortical effects.Calculations of unsteady cloud cavitating fows around a Clark-Y hydrofoil are performed to assess the predictive capability of the LVC model using well-documented experimental data.Compared with the conventional Zwart's model,better agreement is observed between the predictions of the LVC model and experimental data,including measurements of time-averaged fl w structures,instantaneous cavity shapes and the frequency of the cloud cavity shedding process.Based on the predictions of the LVC model,it is demonstrated that the evaporation process largely concentrates in the core region of the leading edge vorticity in accordance with the growth in the attached cavity,and the condensation process concentrates in the core region of the trailing edge vorticity,which corresponds to the spread of the rear component of the attached cavity.When the attached cavity breaks up and moves downstream,the condensation area fully transports to the wake region,which is in accordance with the dissipation of the detached cavity.Furthermore,using vorticity transport equations,we also fin that the periodic formation,breakup,and shedding of the sheet/cloud cavities,along with the associated baroclinic torque,are important mechanisms for vorticity production and modification When the attached cavity grows,the liquid–vapour interface that moves towards the trailing edge enhances the vorticity in the attached cav-ity closure region.As the re-entrant jet moves upstream,the wavy/bubbly cavity interface enhances the vorticity near the trailing edge.At the end of the cycle,the break-up of the stable attached cavity is the main reason for the vorticity enhancement near the suction surface.