位置:成果数据库 > 期刊 > 期刊详情页
基于浅层语义树核的阅读理解答案句抽取
  • ISSN号:1003-0077
  • 期刊名称:《中文信息学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学计算机学院信息检索研究室,黑龙江哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(60435020,60675034);国家863项目(2006AA012145)
中文摘要:

阅读理解系统是通过对一篇自然语言文本的分析理解,对用户根据该文本所提的问题,自动抽取或者生成答案。本文提出一种利用浅层语义信息的英文阅读理解抽取方法,首先将问题和所有候选句的语义角色标注结果表示成树状结构,用树核(treekernel)的方法计算问题和每个候选句之间的语义结构相似度,将该相似度值和词袋方法获得的词匹配数融合在一起,选择具有最高分值的候选句作为最终的答案句。在Remedia测试语料上,本文方法取得43.3%的HumSent准确率。

英文摘要:

Automatic reading comprehension systems can analyze a given passage and generate/extract answers in response to questions about the passage. An approach integrating shallow semantic information to extract answer sentence is proposed in this paper. The labeled semantic roles in question and candidate sentences are represented as semantic trees, then the structure similarity is calculated using tree kernel between them. After combining the similarity with matching words count obtained using bag of-words method, the sentence with the highest score is chosen as answer sentence. The proposed approach achieves 43.3% HumSent accuracy on the Remedia corpora.

同期刊论文项目
期刊论文 29 会议论文 12
同项目期刊论文
期刊信息
  • 《中文信息学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国中文信息学会 中国科学院软件研究所
  • 主编:孙茂松
  • 地址:北京海淀中关村南四街4号中科院软件所
  • 邮编:100190
  • 邮箱:jcip@iscas.ac.cn
  • 电话:010-62562916
  • 国际标准刊号:ISSN:1003-0077
  • 国内统一刊号:ISSN:11-2325/N
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9136