How the initial fluctuation affects on the elliptic flow is investigated by investigating the rapidity, transverse 4-velocity, centrality dependencies of elliptic flow for Au+Au at 1 GeV/A with the help of an Isospin Quantum Molecular Dynamics (IQMD). In addition, we compare the flow calculated with respect to participant plane created by the initial geometry in coordinate space with the flow reconstructed by the experimental event-plane method, and compare the flow with the experimental data of the FOPI collaboration. It shows that there exists some discrepancy between the flows reconstructed by the above two methods.
How the initial fluctuation affects on the elliptic flow is investigated by investigating the rapidity, transverse 4-velocity, centrality dependencies of elliptic flow for Au+Au at 1 GeV/A with the help of an Isospin Quantum Molecular Dynamics (IQMD). In addition, we compare the flow calculated with respect to participant plane created by the initial geometry in coordinate space with the flow reconstructed by the experimental event-plane method, and compare the flow with the experimental data of the FOPI collaboration. It shows that there exists some discrepancy between the flows reconstructed by the above two methods.