利用神经网络对Zr-Al-Ni-Cu非晶体系的各个元素成分以及过冷液相区ΔTx和约化玻璃转变温度Trg的样本进行了分析,建立Zr-Al-Ni-Cu非晶体系的形成能力预测模型.并利用约化玻璃转变温度Trg与非晶形成能力的关系对Zr-Al-Ni-Cu非晶体系的形成能力进行了预测.
Artificial neural network is used to analyze the swatch of Zr-Al-Ni-Cu amorphous system composition, the supercooled liquid regions ΔTx and the reduced glass transition temperature Trg, to construct the model of Zr-Al-Ni-Cu amorphous system forming ability. The glass forming ability in Zr-Al-Ni-Cu amorphous system is forecasted by the relationship between the reduced glass transition temperature Trg and glass forming ability.