在这份报纸,在 3-dimensional Anti-de 保姆空间的非空的 Frenet 曲线上的弯曲精力行动的 extremals 被学习。我们完全由照解决 Euler-Lagrange 方程。由使用杀死的域,我们为充分在 Anti-de 保姆空间 H13 沉浸的关上的概括 elastica 获得存在。
In this paper,the extremals of curvature energy actions on non-null Frenet curves in 3-dimensional Anti-de Sitter space are studied.We completely solve the Euler-Lagrange equation by quadratures.By using the Killing fields,we obtain existence for closed general-ized elastica fully immersed in Anti-de Sitter space H_1~3.