令L=-△+V是薛定谔算子,其中△是R^n上的拉普拉斯算子,并且非负位势V属于逆H?lder类Bq(q≥n/2).与算子L相关的Riesz变换记为T1=V(-△+V)^(-1)和T2=V^(-1/2)(-△+V)^(-1/2),对偶Riesz变换记为T1^*=(-△+V)^(-1)V和T2^*=(-△+V)^(-1/2)V^(-1/2).本文建立了T1^*和T2^*以及他们的交换子在与位势V∈Bq,q≥n/2相关的加权Morrey空间L(α,V,ω)^(p,λ)(R^n)上的有界性.这些结果实质性地推广了一些已知的结果.作为应用,本文的结果可以应用于Hermite算子的情形.
Let L =-△+ V be a Schr?dinger operator,where A is the Laplacian on R^n and the nonnegative potential V belongs to the reverse H?lder class Bq for q ≥n/2.The Riesz transforms associated with the operator L are denoted by T1 = V(-△ + V)^(-1) and T2 =V^(-1/2)(-△ + V)^(-1/2) and the dual Riesz transforms are denoted by T1^* =(-△ + V)^(-1)V and T2^* =(-△ + K)^(-1/2)V^(-1/2).In this paper,we establish the boundedness for the operator T1^* and T2^* and their commutators on weighted Morrey spaces L(α,V,ω)^(p,λ)(R^n) associated with the potential V ∈ Bq for q ≥ n/2.These results generalize substantially some well-known results.As an application,we can apply our results to the case of Hermite operators.