位置:成果数据库 > 期刊 > 期刊详情页
分形基底上受限固-固模型动力学性质的数值模拟研究
  • ISSN号:1000-3290
  • 期刊名称:《物理学报》
  • 时间:0
  • 分类:O322[理学—一般力学与力学基础;理学—力学]
  • 作者机构:[1]中国矿业大学理学院物理系,徐州221116
  • 相关基金:中央高校基本科研业务费(批准号:2013XK04)和国家自然科学基金(批准号:11304377,11247249)资助的课题.
中文摘要:

为了探讨非完整基底结构对生长表面动力学行为的影响,本文在具有相同分形维数而不同谱维数的谢尔宾斯基箭头和蟹状分形基底上对受限固-固(restricted solid-on-solid,RSOS)模型的生长过程进行了大量的数值模拟研究.通过计算表面宽度和饱和表面极值高度的统计行为对生长表面的动力学行为进行了分析.结果表明,分形基底结构对生长表面的动力学行为具有显著的影响.尽管在两种基底上受限固-固模型的表面宽度均表现出很好的动力学标度行为,仍然满足Family-Vissek标度规律,但由此计算得到的动力学标度指数并不相同.饱和生长表面的极值高度并不能满足三种常用的极值统计分布,即Weibull,Gumbel和Frechet分布,而是能很好地符合Asym2Sig分布.

英文摘要:

In order to investigate the effect of the structure of a non-complete substrate on the dynamic behaviors of a growing surface, the restricted solid-on-solid model on Sierpinski arrowhead and Crab fractal substrates, which have the same fractal dimensions but of different spectrum dimensions, are extensively studied by means of numerical simulations. The surface width and the maximal height of the saturated surface are calculated. It is found that the microscopic structure of the substrates affects significantly the dynamic properties of the surfaces. Although the restricted solid-on-solid model evolving on two kinds of fractal substrates exhibits dynamic scaling behavior, the standard Family-Vicsek scaling is still satisfied for different dynamic scaling exponents. The maximal height of the width of saturated surface can be fitted by Asym2Sig distribution, not by the three kinds of usual extreme statistical distribution, i.e. Weibull, Gumbel, and Frechet distributions.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《物理学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国物理学会 中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京603信箱(中国科学院物理研究所)
  • 邮编:100190
  • 邮箱:apsoffice@iphy.ac.cn
  • 电话:010-82649026
  • 国际标准刊号:ISSN:1000-3290
  • 国内统一刊号:ISSN:11-1958/O4
  • 邮发代号:2-425
  • 获奖情况:
  • 1999年首届国家期刊奖,2000年中科院优秀期刊特等奖,2001年科技期刊最高方阵队双高期刊居中国期刊第12位
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:49876