位置:成果数据库 > 期刊 > 期刊详情页
基于混沌PSO算法优化RBF网络入侵检测模型
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科技大学计算机科学与技术学院,合肥230027, [2]阜阳师范学院计算机与信息学院,安徽阜阳236037
  • 相关基金:国家自然科学基金(No.61170233,No.61232018,No.61272472,No.61272317); 全国统计科研计划资助项目(No.2012LY009); 安徽省优秀青年人才基金项目(No.2011SQRL173)
中文摘要:

针对网络安全中异常入侵检测,给出了一种构建最优神经网络入侵模型的方法。采用混沌扰动改进粒子群优化算法,优化径向基函数RBF神经网络入侵模型。把网络特征子集和RBF神经网络参数编码成一个粒子,通过粒子间的信息交流与协作快速找到全局最优粒子极值。在KDDCup99数据集进行仿真实验,实验数据表明,建立了一种检测率高、速度快的网络入侵检测模型。

英文摘要:

For anomaly intrusion detection in network security, this paper proposes a method of establishing the optimal neural network intrusion model. It improves particle swarm optimization algorithm by chaos perturbation. And it optimizes Radial Basis Function(RBF)neural network intrusion model. The subset features of network and RBF neural network parameters are considered as a particle. It uses the inter particle exchange of information and collaboration to find the global optimal particle extremum quickly. The simulation experiment is carried out on KDD Cup99 datasets. The simulation results show that it is a high detection ratio and fast speed network intrusion detection model.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887