位置:成果数据库 > 期刊 > 期刊详情页
改进的基于高斯混合模型的运动目标检测算法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]苏州大学物理科学与技术学院,江苏苏州215006
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60678051)
中文摘要:

针对固定场景视频监控中,由于运动物体在运动目标检测算法初始化时的存在而导致传统的基于高斯混合模型的运动目标检测算法收敛速度慢的问题,提出了改进算法。该改进算法通过采用在线K-均值聚类方法对混合高斯模型进行初始化,提高了算法的收敛速度。同时在模型更新时,通过对匹配准则和新高斯分布生成准则的改进,节约了存储空间。实验结果表明,与传统算法相比,改进算法能够快速、有效地检测运动目标,具有更好的鲁棒性。

英文摘要:

In a video surveillance system with static cameras,the moving objects’presence during the initialization to the traditional moving objects detection algorithm based on Gaussian mixture model often results in the low convergence speed.To increase the model convergence speed,an improved detection algorithm is presented.The improved method uses on-line K-means clustering algorithm to initialize the model.It also saves the memory space with the improvement to the matching rule and new Gaussian distribution generation rule during the model update.The experimental results demonstrate the improved algorithm can fast and efficiently detect moving objects,and has better robustness than the traditional algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887