有限p-群G的中心核K(G)是G的每一中心自同构都不变的全体元素所构成的子群.如果G是幂零类为2的p群,首先给出了|Aut。(G):Inn(G)|与|Z(G):K(G)|相等的充分必要条件,其次研究了|Autc(G):Inn(G)|与|Z(G):K(G)|相差一个p的倍数的条件.
Let G be a finite p-group and let K(G) be a subgroup of G consisting of all elements in G fixed by every central automorphism in G. A necessary and sufficient condition is given on |Autc(G): Inn(G)| = |Z(G) : K(G)| for a finite p-group G of class 2. The condition for |Autc(G) : Inn(G)| = p|Z(G) : K(G)| is also studied.