利用T矩阵方法,以及基于扩散限制凝聚理论的广义多粒子米散射方法,研究了多种气溶胶粒子在1.6和2.0μm波段处,非球形单粒子和团簇粒子的光散射辐射特性,并分析了粒子有效半径、复折射指数、粒子形状、相对湿度等因素对非球形粒子散射特性的影响.分析表明,除了粒子有效半径和形状会在不同程度上引起粒子散射特性变化,相对湿度对其影响也比较大,球形粒子与非球形粒子在不同相对湿度下后向散射相对差异均在18%以上;当粒子体积较小时,水溶性气溶胶的后向散射强度随相对湿度的增加而增强,而当粒子体积较大时,则随相对湿度的增加而减弱;在体积相同的条件下,体积较小的团簇粒子的不对称因子比非球形单粒子平均偏大0.023,而体积较大的团簇粒子,却比非球形单粒子不对称因子平均偏小0.055;单粒子或等体积的团簇粒子,其不同波段之间单次散射反照率差异较大,最大可达0.226.该工作对研究气溶胶多次散射对CO2浓度卫星反演精度影响具有重要的科学意义.
Based on the T-matrix method and the generalized multiparticle Mie-solution (GMM) method combined with diffusion-limited aggregation simulator, the scattering properties of non-spherical particles and aggregates are simulated at 1.6 μm and 2.0 μm. And the effects of the equal-volume sphere radius, the complex refractive index, the particle shape and the relative humidity (RH) on the scattering characteristics parameters of non-spherical aerosol are analyzed. The results show that besides the equal-volume sphere radius and the particle shape, the RH could also lead to a large change of the scattering properties. And the relative differences in back scattering between spherical particle's and non-spherical particles in different relative humidities are all larger than 18%. If the RH increases, the back scattering will increase for small-size particles, while the back scattering of large-size ones will decrease. The asymmetry factors of the smaller aggregates are 0.023 averagely greater than those of the single equal-volume non-spherical particles, which the asymmetry factors of the bigger aggregates are 0.055 averagely less than those of the single equal-volume non-spherical particles. The differences in single scattering albedo between the two wavelengths 1.6 μm and 2.0 μm are all much larger for either aggregates or single equal-volume particles, and the biggest difference reaches 0.226. This research has scientific significance for studying the aerosol multiple scattering influencing on the accuracy of CO2 satellite retrieval.