位置:成果数据库 > 期刊 > 期刊详情页
基于特征聚集度的FCM—RSVM算法及其在人工焊点缺陷识别中的应用
  • ISSN号:1006-3080
  • 期刊名称:《华东理工大学学报:自然科学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华东理工大学信息科学与工程学院,上海200237
  • 相关基金:国家自然科学基金(61371150)
中文摘要:

摘要:针对人工焊点缺陷识别方法进行研究,提出了一种基于特征聚集度的模糊C均值聚类(FCM)与松弛约束支持向量机(RSVM)联用的分类识别算法。在提取人工焊点特征向量的基础上,算法首先对样本特征数据进行模糊C均值聚类,依据样本隶属度函数计算不同特征的特征聚集度,并由特征聚集度指标改进RSVM算法中的松弛量参数,建立最终的分类器模型。实验结果表明:本文提出的算法建立了泛化能力更强的分类模型,能有效抑制噪声及模糊边界点对分类模型的影响,在人工焊点缺陷识别的应用中获得了满意的识别结果。

英文摘要:

In order to improve the defect recognition of manual solder joints, this paper proposes a feature-aggregation-degree based combination algorithm of fuzzy C-means elustering(FCM) and relaxed support vector machine (RSVM). Firstly, the characteristics of samples are extracted based on FCM algorithm and the feature aggregation degrees are calculated according to the different memberships. Then, the slack variable parameter of RSVM algorithm is repaired based on the feature aggregation degree such that the final classification model is established. The experiment results show that the proposed algorithm can effectively reduce the effect of noise or blur point on the classification model and build a stronger generalization classification model to improve the accuracy of defect recognition.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华东理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:华东理工大学
  • 主编:刘红来
  • 地址:上海梅陇路130号
  • 邮编:200237
  • 邮箱:ecustxbbzz@ecust.edu.cn
  • 电话:021-64252666
  • 国际标准刊号:ISSN:1006-3080
  • 国内统一刊号:ISSN:31-1691/TQ
  • 邮发代号:4-382
  • 获奖情况:
  • 2001年被国家新闻出版总署评为"中国期刊方阵科技...,2002年获"第五届全国石油和化工行业优秀期刊二等奖",2004年获"全国高校优秀科技期刊二等奖",2006年荣获"首届中国高校优秀科技期刊奖"以及"第...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10083