本文研究求解R(α,β1,β2,γ)类非线性中立型延迟积分微分方程的一般线性方法的数值稳定性,获得了代数稳定的一般线性方法稳定及渐近稳定的条件,最后的数值试验验证了所获理论的正确性.
This paper is concerned with the numerical stability of general linear methods for a class R(α,β1,β2,γ) of nonlinear neutral delay integro-differential equations. The sufficient conditions for the stability and asymptotic stability of algebraically stabte general linear methods are derived. A numerical test is given to illustrate our result.