将有限维切换系统指数可稳性结果推广至无穷维Hilbert空间中的分布参数切换系统.以半群理论为基础,通过利用多Lyapunov函数方法,推导了指数可镇定的充分条件.这些条件以线性算子不等式的形式给出,其决定变量是Hilbert空间中的算子;同时系统的可稳性依赖于驻留时间受限的切换规则.在应用到带Dirichlet边界条件的二维热传导切换系统时,这些线性算子不等式被转化成标准的线性矩阵不等式.最后,通过2个例子说明给出结果的有效性.
The exponential stabilization problem for finite dimensional switched systems is extended to the infinite dimensional distributed parameter systems in the Hilbert space. Based on the semigroup theory, by applying the multiple Lyapunov function method, the exponential stabilization conditions are derived. These conditions are given in the form of linear operator inequalities where the decision variables are operators in the Hilbert space; while the stabilization properties depend on the switching rule. Being applied to the two-dimensional heat switched propagation equations with the Dirichlet boundary conditions, these linear operator inequalities are transformed into standard linear matrix inequalities. Finally, two examples are given to illustrate the effectiveness of the proposed results.