位置:成果数据库 > 期刊 > 期刊详情页
Biometric feature extraction using local fractal auto-correlation
  • ISSN号:1674-1056
  • 期刊名称:《中国物理B:英文版》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TN912.3[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650051, China, [2]Key Lab of Signal & Information Processing of Sichuan Province, Southwest Jiaotong University, Chengdu 610031, China
  • 相关基金:Project supported by the National Natural Science Foundation of China (Grant Nos. 61262040, 61271341, 81360230, and 61271007) and the Applied Basic Research Projects of Yunnan Province, China (Grant No. KKSY201203062).
中文摘要:

Image texture feature extraction is a classical means for biometric recognition. To extract effective texture feature for matching, we utilize local fractal auto-correlation to construct an effective image texture descriptor. Three main steps are involved in the proposed scheme:(i) using two-dimensional Gabor filter to extract the texture features of biometric images;(ⅱ) calculating the local fractal dimension of Gabor feature under different orientations and scales using fractal auto-correlation algorithm; and(ⅲ) linking the local fractal dimension of Gabor feature under different orientations and scales into a big vector for matching. Experiments and analyses show our proposed scheme is an efficient biometric feature extraction approach.

英文摘要:

Image texture feature extraction is a classical means for biometric recognition. To extract effective texture feature for matching, we utilize local fractal auto-correlation to construct an effective image texture descriptor. Three main steps are involved in the proposed scheme: (i) using two-dimensional Gabor filter to extract the texture features of biometric images; (ii) calculating the local fractal dimension of Gabor feature under different orientations and scales using fractal auto-correlation algorithm; and (iii) linking the local fractal dimension of Gabor feature under different orientations and scales into a big vector for matching. Experiments and analyses show our proposed scheme is an efficient biometric feature extraction approach.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国物理B:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国物理学会和中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京 中关村 中国科学院物理研究所内
  • 邮编:100080
  • 邮箱:
  • 电话:010-82649026 82649519
  • 国际标准刊号:ISSN:1674-1056
  • 国内统一刊号:ISSN:11-5639/O4
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:406