采用电流直加热动态热压烧结工艺制备陶瓷颗粒增强铁基复合材料,研究高体积分数(25%,30%,35%)下,单一类型颗粒(SiC,TiC,TiN)及混合类型颗粒(TiC+TiN,SiC+TiN,SiC+TiC)作为增强相对铁基复合材料磨损性能的影响。结果表明:单一类型粒子强化时,TiNP/Fe复合材料的耐磨性最好,TiCP/Fe次之,SiCp/Fe最差。混合粒子作为增强体时,(TiC+TiN)P/Fe复合材料磨损性能显著优于其对应的单一颗粒增强材料;其中粒子含量为30%时,(TiC+TiN)P/Fe复合材料磨损性能提高最大,其磨损量比TiCP/Fe降低了51.9%,比TiNp/Fe复合材料降低了44.1%,体现出可贵的混合增强价值。(SiC+TiC)_P/Fe和(SiC+TiN)P/Fe复合材料的磨损性能分别处于对应的两个单一颗粒增强材料之间。磨损表面观察表明,耐磨性好的(TiC+TiN)P/Fe复合材料的磨损机理为磨粒磨损,而(SiC+TiC)_P/Fe和(SiC+TiN)P/Fe复合材料除磨粒磨损外还存在明显的疲劳磨损现象。
Ceramic particles reinforced iron matrix composites were prepared by the dynamic tempera-ture resistant hot press technology. The wear resistance of the iron matrix composites reinforced by monolithic particles (SiC, TiC, TiN) and hybrid particles mixture (TiC+TiN,SiC+TiN,SiC + TiC) under high volume fraction of 25 % , 30 % and 35 % were investigated. The results show that when using monolithic particle as reinforcement, the wear resistance of the TiNp/Fe composite is the best among the three monolithic composites, the TiCP/Fe is the second and the SiCP/Fe is the worst. The wear resistance of (TiC+TiN)P/Fe is better than that of the composites reinforced by corresponding monolithic particles, which represents the great effect of hybrid strengthening. When the volume frac-tion of particles is 30%, the wear resistance of the (TiC+TiN)P/Fe composite increases the most and the wear loss decreases by 51. 9 % and 44. 1 % than that of the TiCP/Fe and TiNp/Fe, respectively. However, the wear resistance of (SiC + TiC)P/Fe and (SiC+TiN)P/Fe composites are between that of the two corresponding monolithic composites. The microstructure of worn surfaces shows that the wear mechanism of the (TiC+TiN)P/Fe composite is abrasive wear, while that of the (SiC+TiN)P/Fe and (SiC+TiC)P/Fe are fatigue and abrasive wear.