位置:成果数据库 > 期刊 > 期刊详情页
多导脑电复杂度特征的谎言测试研究
  • ISSN号:1001-0548
  • 期刊名称:《电子科技大学学报》
  • 时间:0
  • 分类:R338[医药卫生—人体生理学;医药卫生—基础医学]
  • 作者机构:[1]中南民族大学生物医学工程学院,武汉430074, [2]武警警官学院信息工程系,成都610213, [3]认知科学国家民委重点实验室,武汉430074, [4]电子科技大学生命科学与技术学院,成都610054, [5]医学信息分析及肿瘤诊疗湖北省重点实验室,武汉430074
  • 相关基金:国家自然科学基金(81271659):中国博士后基金(2014M552348,2015M572465);四川省科技厅基金(2015JY0222);四川省教育厅项目(16ZA0449,16ZA0452)
中文摘要:

谎言测试在刑讯侦查和心理疾病治疗中具有重要意义。为了区分是否说谎,30名受试者被随机分为诚实和说谎两组,根据脑电信号的非线性特征-复杂性测度,对他们的12导联的脑电信号提取了KC复杂度、近似熵与样本熵3种复杂度特征,通过统计分析,用两类受试者具有显著差异的多导电极上的复杂度构建特征向量,最后使用支持向量机分类识别特征样本。研究发现:3种复杂度指标中,两类受试者的样本熵特征在更多电极上存在显著差异,由它们构建的特征向量的分类准确率最高,表明样本熵可以更有效地区分诚实和说谎两种不同脑认知状态下的脑电信号,该研究为基于脑电的测谎提供了一种新的途径。

英文摘要:

There is great significance in lie detection for the criminal investigation and psychological disease treatment. To distinguish lying, thirty subjects were divided into lying and telling-truth groups randomly and three groups of nonlinear features--complexity measures including Kolmogorov complexity, approximate entropy and sample entropy were extracted. By statistical analysis, the feature vector was constructed by using complexity on the muilti electrodes with significant difference of complexity values between the two groups of subjects. The support vector machine was used to classify and idendify feature samples. The study finds that there are more electrodes with significant difference of complexity values for the sample entropy, and the highest classification accuracy can be observed for the feature vector constructed from the sample entropy, compared with the other two featues. Experimental resutls indicate that sample entropy could be used to classify EEG signals in lying from EEG signals in telling-truth, which provides a new alternative for EEG-based lie detection method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子科技大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:电子科技大学
  • 主编:周小佳
  • 地址:成都市成华区建设北路二段四号
  • 邮编:610054
  • 邮箱:xuebao@uestc.edu.cn
  • 电话:028-83202308
  • 国际标准刊号:ISSN:1001-0548
  • 国内统一刊号:ISSN:51-1207/T
  • 邮发代号:62-34
  • 获奖情况:
  • 全国优秀科技期刊,第二届全国优秀科技期刊二等奖,两次获国家新闻出版署、国家教委“全国高校自然科...,中国期刊方阵双百期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12314