为从 time-of-flight 分割服的血容器,磁性的回声 angiography (TOF-MRA ) 精确地想象,我们与 Markov 随机的地(MRF ) 基于统计模型建议一个平行分割算法。第一,我们与基于补丁的 Fourier 转变改进传统的非局部的工具过滤器到 preprocess TOF-MRA 图象。在这步,我们主要利用 MRA 大脑图象顺序的稀疏和自我类似。第二,我们把 MRF 信息加到有限混合模式(FMM ) 适合医药图象的紧张分发。我们在图象顺序使用 MRF 估计服的纸巾的比例。最后,我们选粒子群优化(PSO ) 为算法到 parallelize FMM 的参数评价。很多实验特别为狭窄的容器验证我们的途径的高精确性和坚韧性。工作将在脑血管的疾病的预防和诊断上为医生提供重要帮助。
For segmenting cerebral blood vessels from the time-of-flight magnetic resonance angiography (TOF-MRA) images accurately, we propose a parallel segmentation algorithm based on statistical model with Markov random field (MRF). Firstly, we improve traditional non-local means filter with patch-based Fourier transformation to preprocess the TOF-MRA images. In this step, we mainly utilize the sparseness and self-similarity of the MRA brain images sequence. Secondly, we add the MRF information to the finite mixture mode (FMM) to fit the intensity distribution of medical images. We make use of the MRF in image sequence to estimate the proportion of cerebral tissues. Finally, we choose the particle swarm optimization (PSO) algorithm to parallelize the parameter estimation of FMM. A large number of experiments verify the high accuracy and robustness of our approach especially for narrow vessels. The work will offer significant assistance for physicians on the prevention and diagnosis of cerebrovascular diseases.