位置:成果数据库 > 期刊 > 期刊详情页
FAST MULTIPOLE SINGULAR BOUNDARY METHOD FOR LARGE-SCALE PLANE ELASTICITY PROBLEMS
  • ISSN号:0894-9166
  • 期刊名称:《固体力学学报:英文版》
  • 时间:0
  • 分类:U469.11[机械工程—车辆工程;交通运输工程—载运工具运用工程;交通运输工程—道路与铁道工程] X53[环境科学与工程—环境工程]
  • 作者机构:[1]State Key Laboratory of Hydrology- Water Resources and Hydraulic Engineering, Center for Numerical Simulation Software in Engineering and Sciences, College of Mechanics and Materials, Hohai University, Nanjing 210098, China, [2]Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250, USA
  • 相关基金:Project supported by the National Basic Research Program of China (973 Project, No. 2010CB832702), the National Science Funds for Distinguished Young Scholars of China (No. 11125208), the National Natural Science Foundation of China (Nos. 11125208 and 11302069), the 111 project under Grant B12032, Jiangsu Province Graduate Students Research and Innovation Plan (No. KYZZ_0138), and the scholarship from the China Scholarship Council (CSC) (No. 201306710026).
中文摘要:

The singular boundary method(SBM) is a recent meshless boundary collocation method that remedies the perplexing drawback of fictitious boundary in the method of fundamental solutions(MFS). The basic idea is to use the origin intensity factor to eliminate singularity of the fundamental solution at source. The method has so far been applied successfully to the potential and elasticity problems. However, the SBM solution for large-scale problems has been hindered by the operation count of O(N~3) with direct solvers or O(N~2) with iterative solvers, as well as the memory requirement of O(N~2). In this study, the first attempt was made to combine the fast multipole method(FMM) and the SBM to significantly reduce CPU time and memory requirement by one degree of magnitude, namely, O(N). Based on the complex variable representation of fundamental solutions, the FMM-SBM formulations for both displacement and traction were presented. Numerical examples with up to hundreds of thousands of unknowns have successfully been tested on a desktop computer. These results clearly illustrated that the proposed FMM-SBM was very efficient and promising in solving large-scale plane elasticity problems.

英文摘要:

The singular boundary method (SBM) is a recent meshless boundary collocation method that remedies the perplexing drawback of fictitious boundary in the method of fundamental solutions (MFS). The basic idea is to use the origin intensity factor to eliminate singularity of the fundamental solution at source. The method has so far been applied successfully to the potential and elasticity problems. However, the SBM solution for large-scale problems has been hindered by the operation count of O(N^3) with direct solvers or O(N^2) with iterative solvers, as well as the memory requirement of O(N^2). In this study, the first attempt was made to combine the fast multipole method (FMM) and the SBM to significantly reduce CPU time and memory requirement by one degree of magnitude, namely, O(N). Based on the complex variable represen- tation of fundamental solutions, the FMM-SBM formulations for both displacement and traction were presented. Numerical examples with up to hundreds of thousands of unknowns have successfully been tested on a desktop computer. These results clearly illustrated that the proposed FMM-SBM was very efficient and promising in solving large-scale plane elasticity problems.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《固体力学学报:英文版》
  • 主管单位:
  • 主办单位:中国力学学会
  • 主编:郑泉水
  • 地址:武汉市珞喻路1037号华中科技大学南一楼西北508室
  • 邮编:430074
  • 邮箱:amss@mail.hust.edu.cn
  • 电话:027-87543737
  • 国际标准刊号:ISSN:0894-9166
  • 国内统一刊号:ISSN:42-1121/O3
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:133