位置:成果数据库 > 期刊 > 期刊详情页
基于邻近图的点群层次聚类方法的研究
  • ISSN号:1001-1595
  • 期刊名称:测绘学报
  • 时间:0
  • 页码:256-261
  • 语言:中文
  • 分类:P28[天文地球—地图制图学与地理信息工程;天文地球—测绘科学与技术]
  • 作者机构:[1]武汉大学资源与环境科学学院,湖北武汉430079, [2]武汉大学教育部地理信息系统重点实验室,湖北武汉430079, [3]嘉应学院地理系,广东梅州514015, [4]武汉大学测绘遥感信息工程国家重点实验室,湖北武汉430079
  • 相关基金:国家自然科学基金项目(40571133);地理空间信息工程国家测绘局重点实验室基金项目(200625);测绘遥感信息工程国家重点实验室项目((04)0301);嘉应学院资助项目(06KJZ01)
  • 相关项目:地理空间数据渐进式综合的最优化算法
中文摘要:

空间聚类是点状空间目标群在地图综合中必须解决的问题。分析点群的几种常用邻近图的特征及其层次关系,并基于原始的点集合生成的DT构建相应的GG,UG,MST和NNG,然后在所选择的密度适应性约束、距离适应性约束和偏差适应性约束这三种条件下,利用所生成的邻近图进行了点群的层次聚类。研究并改进现有的点状空间目标群的无监督层次聚类方法,并通过实例验证该算法的可行性。

英文摘要:

Spatial clustering is an important task in cartographic generalization. It is necessary to cluster a group of points. For example, in the typification operator and selection operator of a group of points, the spatial characteristics of clusters of points have to be considered. Clustering algorithms have become increasingly more important in handling and analyzing spatial data. These clustering methods can be classified into two kinds: supervised and unsupervised approaches, or hierarchical and non-hierarchical approaches. Based on neighborhood graphs of a set of point features, the existing unsupervised hierarchical methods of clustering points have been discussed and improved in this paper. Firstly, several common neighborhood graphs' features and their hierarchical relationships are analyzed, and GG( Gabriel Graph), UG(Urquhart Graph), MST( Minimum Spanning Tree) and NNG( Nearest Neighborhood Graph) are created from the same initial set of points based on DT( Delaunay Triangulation). In this paper, UG is selected to be used for spatial clustering instead of RNG( Relative Neighborhood Graph), because UG approximates to RNG well, and there are typically only about 2% more edges in UG than in RNG ,this can be found through statistical tests of random samples, furthermore, UG is much easier to compute from the DT. Secondly, the constraints which include density compatibility, distance compatibility and variance compatibility are given with the help of statistics and Anders' research results. According to these constraints, the hierarchical clustering approaches are realized by means of these neighborhood graphs of points. At last, the algorithm of clustering points is improved and researched, the procedure about the clustering algorithm is elaborated, and the feasibility of the unsupervised hierarchical approach is validated through a detailed example.

同期刊论文项目
期刊论文 34 会议论文 2 著作 2
同项目期刊论文
期刊信息
  • 《测绘学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国测绘地理信息学会
  • 主编:杨元喜
  • 地址:北京市西城区三里河路50号
  • 邮编:100045
  • 邮箱:chxb@periodicals.net.cn
  • 电话:010-68531192
  • 国际标准刊号:ISSN:1001-1595
  • 国内统一刊号:ISSN:11-2089/P
  • 邮发代号:2-224
  • 获奖情况:
  • 中国科学技术协会精品科技期刊工程项目资助期刊(2...,中国国际影响力优秀学术期刊(2012年),第四届中国百种杰出学术期刊(2005年),科技部“中国精品科技期刊”(2008年、2011年、201...,中国科协优秀期刊,中国科协年度期刊内容和编校质量良好的13种期刊之...,中国测绘学会第一、第二届“全国优秀测绘期刊奖”...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰地学数据库,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),瑞典开放获取期刊指南,中国北大核心期刊(2000版)
  • 被引量:18477