针对传统推荐算法所面临的冷启动与稀疏数据问题以及现有ARM(association rule mining)算法大多用于购物篮顾客行为分析,并不适用于特定用户推荐业务且效率较低等现象,提出一种基于相似度的关联推荐模式,实现一种新的结合关联规则推荐与协同过滤推荐方法.采用基于指定后件项的关联规则推荐,直接对目标用户和目标项目进行关联规则挖掘,并利用兴趣因子对活跃用户(或项目)与非活跃用户(或项目)进行权值均衡,以加权方法推荐最优解(规则).同时,采用相似度测量方法,过滤低相似度的项目,为用户推荐既有高评分又具有较高相似度的项目集合.最后,结合规则推荐与CF(collaborative filter)推荐形成最终推荐结果,实现基于用户(或项目)的协同过滤推荐.在MovieLens数据集上的实验结果表明,同已有成果相比本文方法能够更好地处理稀疏数据和冷启动问题,推荐质量明显提高.