在空气的 CO2 的增加是导致温室效应的一个主要因素,它引起越来越严重的全球环境问题。CO2 的减小是为人的幸存的挑战,并且它也是一个大技术问题。CO2 液体岩石相互作用是涉及地质的存储的一个关键科学问题。CO2 液体岩石相互作用有许多多尺度的变化。由于在在 micron-nano-sized 矿物质,和离子和晶体之间的表面原子和表面精力的数量的大差别, micron-nano 规模上的 CO2 液体岩石相互作用的速度和效率比另外的规模上的那些高得多。是从自然界,毛孔的 micron-nano 结构和自然多孔的矿物质的表面化学药品修正被知道(沸石,硅藻土,海泡石, palygorskite , halloysite ,等等)应该进一步被调查,它能被用作 micron-nano 矿物质有为捕获 CO2 的高能力和高效率的多孔的材料。通过在自然界上由矿物质模仿吸附能力和 CO2 的过程, micron-nano 技术被用于基于钙、基于镁的矿物质(橄榄石,辉石,长石,泥土,等等) 联系区域以便改进钙和镁的活动并且扩大反应。这样,由基于钙、基于镁的矿物质捕获和 CO2 的存储的效率能极大地被改进。这些矿物质能也与大能力和高效率作为 micron-nano-mineral 材料被使用捕获并且存储 CO2。
The increase of CO2 in atmosphere is a main factor leading to "greenhouse effect", which causes more and more serious global environmental problems. The reduction of CO2 is a challenge for the survival of human beings, and it is also a big technical problem. CO2 fluid-rock interaction is a key scientific problem involved in geological storage. The CO2 fluid-rock interaction has a variety of multi-scale changes. Due to great differences in the quantity of surface atoms and surface energy between micron-nano-sized minerals, and ions and crystals, the speed and efficiency of CO2 fluid-rock interaction on a micron-nano scale are much higher than those on other scales. As is known from the natural world, the micron-nano structures of pores and the surface chemical modification of natural porous minerals (zeolite, diatomite, sepiolite, palygorskite, halloysite, etc.) should be further investigated, which can be used as the micron-nano -mineral porous materials with high capacity and high efficiency for capturing CO2. Through simulating the adsorption capacity and process of COs by minerals in the natural world, the rnicron-nano technology is applied to calcium- and magnesium-based minerals (olivine, pyroxene, feldspar, clay, etc.) so as to improve the activity of calcium and magnesium and enlarge the reaction contact area. In this way, the efficiency of capturing and storage of CO2 by calcium- and magnesium-based minerals can be greatly improved. These minerals can also be used as the micron-nano-mineral materials with large capacity and high efficiency for capturing and storing CO2.