“语义鸿沟”是指计算机识别的底层特征和高层语义之间的差距。针对“语义鸿沟”现象,把图像的视觉属性作为中介,利用属性将高层次的语义关系嵌入机器学习预测模型中,从而很好地解决了该问题。首先介绍属性学习的发展和学习框架,然后对属性学习在图像识别和检索、动作识别、迁移学习和零训练样本等方面的应用进行介绍,最后展望了属性学习今后的发展方向。