蚁群算法能够在没有任何先验知识和人为干预的情况下实现自主聚类,并且鲁棒性较强,易于与其他算法相结合。但蚁群算法消耗时间成本较大,效率较低。而K-medoids聚类是一个基于划分的经典聚类算法,该算法聚类速度快、聚类效果好而被广泛应用于各种聚类处理中。但需要人为确定簇数目,并对初始簇中心的依赖性较强。针对以上问题,提出了结合蚁群算法和K-medoids的聚类算法(AKCA),该算法融合了蚁群算法和K-medoids算法各自在聚类上的优点。实验结果表明,该算法对于小型数据集具有运行效率高、聚类质量好和自适用性强等优点。
Ant colony algorithm can achieve autonomous clustering without any prior knowledge and human intervention.It is strong robust and easy to combine with other algorithms.But ant colony algorithm is expensive on time consuming.K-medoids algorithm is a classical clustering algorithm based on partitioning.It is widely used because it has high speed and good efficiency.But the number of clusters must be prior decided.K-medoids algorithm dependents on the initial cluster centre points.In order to resolve these problems,a clustering algorithm named ant colony algorithm and K-medoids clustering algorithm(AKCA) is proposed.The advantage of ant colony algorithm is incorporated with K-medoids algorithm.The experimental results show that the proposed algorithm has high efficiency,clustering quality and adaptability for small scale databases.