研究了与磁场强度相关的手性丙氨酸晶体的电子轨道运动的磁性质.根据丙氨酸单晶的两性离子(’NHs—C(CHs)H—COi)模型的手性和蛋白质中肽键晶格结构的螺旋性,当外加磁场为5一磁场方向平行于丙氨酸晶轴c(z)的极性N^+H…O^-氢键,观察到D一丙氨酸晶格中,氢原子的电子自旋翻转,在297.6K直接突现顺磁性-L-丙氨酸则先发生电子自旋转向,然后在303.9K突现顺磁性.实验发现:外加强磁场可以分裂手性丙氨酸晶格中氢键的简并顺磁态,并测出能差.本文进一步证明了准一维极性N^+H…O^-氢键在晶格中可以发生白旋.轨道分离。表现出一维物理的基本特征.
We investigated the field-dependent magnetic properties of chiral alanine crystals, especially associated with the electronic orbital motions. Based on the chirality of the zwitterionic model (^+NH3- C(CH3)H-CO2-) and the helicity of the lattice structure of peptide bond in proteins, when an external field of 5 T was applied parallel to the preferred axis c(z) of the N+H...O- hydrogen bond in D-alanine, the electron spin-flip manifested emergent paramagnetism at 297.6 K. Because the spin magnetic dipole moment of hydrogen in L-alanine was originally aligned antiparallel to the field, the electron spins flipped firstly perpendicular to the field then manifested paramagnetism at 303.9 K. The magnetic field of 5 T split a degenerate energy level in the paramagnetic state of chiral alanine. Furthermore, the spin-orbital separation of the quasi-one dimensional N^+H…O^- hydrogen bond in the crystal lattice provided evidence for the hallmark of one-dimensional physics.