在超声的气流的一个二尺寸的薄盘子的非线性的 aerothermoelasticity 的问题被检验。von Karman 的大偏转理论的紧张排水量关系被采用描述几何非线性,空气动力学的活塞理论被采用说明空气动力学的力量的效果。一个新方法,微分照方法(DQM ) ,被用来获得运动方程的分离形式。然后, Runge Kutta 数字方法被使用解决非线性的方程,板的非线性的反应数字地被获得。结果显示由于空气动力学的加热,板稳定性被堕落,并且在系统参数的一个特定的区域,混乱运动发生,并且到混乱运动的线路经由双时期的分叉。
The problem of nonlinear aerothermoelasticity of a two-dimension thin plate in supersonic airflow is examined. The strain-displacement relation of the von Karman's large deflection theory is employed to describe the geometric non-linearity and the aerodynamic piston theory is employed to account for the effects of the aerodynamic force. A new method, the differential quadrature method (DQM), is used to obtain the discrete form of the motion equations. Then the Runge-Kutta numerical method is applied to solve the nonlinear equations and the nonlinear response of the plate is obtained numerically. The results indicate that due to the aerodynamic heating, the plate stability is degenerated, and in a specific region of system parameters the chaos motion occurs, and the route to chaos motion is via doubling-period bifurcations.