位置:成果数据库 > 期刊 > 期刊详情页
带反向预测及斥力因子的改进粒子群优化算法
  • ISSN号:1001-0920
  • 期刊名称:《控制与决策》
  • 时间:0
  • 分类:TP182[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]空军工程大学防空反导学院,西安710051
  • 相关基金:国家自然科学基金项目(61272011,61309022,61309008);陕西省基金项目(2013JM1003).
中文摘要:

针对传统粒子群算法在求解高维空间中复杂多峰函数时容易陷入局部最优的问题,提出带反向预测和斥力因子的改进粒子群优化算法。算法通过引入反向预测因子改进速度更新方式,以降低粒子在运动过程中产生惰性而出现早熟收敛的概率,并给出带斥力因子的位置修正策略,使粒子均匀分散于搜索空间,从而避免陷入局部最优。实验分析表明,在对高维空间中复杂多峰函数进行优化求解时,改进的粒子群优化算法较传统粒子群算法更加优越。

英文摘要:

For the complex multi-peaks function with high dimension, the improved particle swarm optimization algorithm with reverse forecast and repulsion(RFRPSO) is proposed on the basis of analyzing the problem of premature. Firstly, this method improves the speed renewal way by introducing the reverse forecast factor in order to decreas the probability of premature convergence. Furthermore, the repulsion factor is introduced to make the swarm even distribution in search space, which can avoid local optimum. Finally, experimental results show that the performance of RFRPSO algorithm is superior to the traditional PSO algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制与决策》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:张嗣瀛 王福利
  • 地址:沈阳市东北大学125信箱
  • 邮编:110004
  • 邮箱:kzyjc@mail.neu.edu.cn
  • 电话:024-83687766
  • 国际标准刊号:ISSN:1001-0920
  • 国内统一刊号:ISSN:21-1124/TP
  • 邮发代号:8-51
  • 获奖情况:
  • 1997年被评为辽宁省优秀编辑部,1999年期刊影响因子在信息与系统类期刊中排名第二位
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:32961