由奇怪由两部组成、甚至由两部组成的 hypergraphs 刺激了,我们定义奇怪由两部组成(弱 odd-bipartie ) 并且甚至由两部组成(弱 evenbipartite ) 张肌。这被验证奇怪由两部组成的张肌是无法缩减的张肌的所有平顺序,当所有甚至由两部组成的张肌是可约的时,不管顺序的同等值。基于奇怪由两部组成的张肌的性质,我们与 nonnegative 对角线元素,和那 Ztensor 的绝对张肌的最大的 H 特征值学习在 Z 张肌的最大的 H 特征值之间的关系。当顺序是平的, Z 张肌是弱无法缩减的时,我们证明 Z 张肌的最大的 H 特征值和那 Z 张肌的绝对张肌的最大的 H 特征值是相等的,如果并且仅当 Z 张肌是弱奇怪由两部组成的。例子显示出结论的真实性。那么,我们证明有 nonnegative 对角线条目和 Z 张肌的绝对张肌的对称的 Z 张肌是斜的类似,如果并且仅当 Z 张肌有甚至顺序,它是弱奇怪由两部组成的。在那以后,,它被证明那有 nonnegative 对角线条目的对称的 Z 张肌是的一份平订单弱无法缩减, Z 张肌的光谱的平等和那 Z 张肌的绝对张肌的光谱,能被平等描绘他们的光谱半径。
Stimulated by odd-bipartite and even-bipartite hypergraphs, we define odd-bipartite (weakly odd-bipartie) and even-bipartite (weakly even- bipartite) tensors. It is verified that all even order odd-bipartite tensors are irreducible tensors, while all even-bipartite tensors are reducible no matter the parity of the order. Based on properties of odd-bipartite tensors, we study the relationship between the largest H-eigenvalue of a Z-tensor with nonnegative diagonal elements, and the largest H-eigenvalue of absolute tensor of that Z- tensor. When the order is even and the Z-tensor is weakly irreducible, we prove that the largest H-eigenvalue of the Z-tensor and the largest H-eigenvalue of the absolute tensor of that Z-tensor are equal, if and only if the Z-tensor is weakly odd-bipartite. Examples show the authenticity of the conclusions. Then, we prove that a symmetric Z-tensor with nonnegative diagonal entries and the absolute tensor of the Z-tensor are diagonal similar, if and only if the Z-tensor has even order and it is weakly odd-bipartite. After that, it is proved that, when an even order symmetric Z-tensor with nonnegative diagonal entries is weakly irreducible, the equality of the spectrum of the Z-tensor and the spectrum of absolute tensor of that Z-tensor, can be characterized by the equality of their spectral radii.