该文主要研究了C(Ω)型空间上的光滑点(即峰值函数)的存在性和稠密性,其中Ω为紧Hausdorff空间.当Ω不可度量化时,给出了例子说明存在紧Hausdorff空间Ω1使得C(Ω1)空间上的光滑点在全空间稠密,并且给出了反方面的例子说明存在紧Hausdorff空间Ω2使得C(Ω2)空间上的光滑点为空集.最后给出了C(Ω)型空间上的光滑点稠密的充要条件.
In this paper,we study the smooth point(peak function) in space of C(Ω),whereΩis compact Hausdorff space.We give an example to show that there exists compact Hausdorff spaceΩ1 such that the smooth point of C(Ω1) is dense in the whole space.And we give an counter example to show that there exists compact Hausdorff spaceΩ2 such that the smooth point of C(Ω2) is empty.Finally we give an intrinsic character of the smooth point of space C(Ω) is dense in the whole space.