位置:成果数据库 > 期刊 > 期刊详情页
利用多光谱卫星遥感和深度学习方法进行青藏高原积雪判识
  • ISSN号:1001-1595
  • 期刊名称:《测绘学报》
  • 时间:0
  • 分类:P237[天文地球—摄影测量与遥感;天文地球—测绘科学与技术] TP79[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]南京信息工程大学大气科学学院,江苏南京210044, [2]南京信息工程大学信息与控制学院,江苏南京210044, [3]江苏省大气环境与装备技术协同创新中心,江苏南京210044, [4]南京信息工程大学大气遥感学院,江苏南京210044, [5]南京信息工程大学计算机与软件学院,江苏南京210044
  • 相关基金:国家自然科学基金(91337102;41401481); 江苏省自然科学基金(BK20140997;14KJB170017)
中文摘要:

青藏高原积雪对全球气候变化十分重要,针对已有积雪遥感判识方法中普遍采用的可见光与红外光谱数据易受复杂地形与高海拔影响,导致青藏高原地区积雪判识精度较低的问题,提出了一种基于多光谱遥感与地理信息数据特征级融合的积雪遥感判识方法:以风云三号卫星可见光与红外多光谱遥感资料与多要素地理信息作为数据源,由地面实测雪深数据与现有积雪产品交叉筛选出样本标签,构建并训练基于层叠去噪自编码器(SDAE)的特征融合与分类网络,从而有效辨识青藏高原遥感图像中的云、积雪以及无雪地表。经地面实测雪深数据验证,该方法分类精度显著高于使用相同数据源的FY-3A/MULSS积雪产品,略高于国际主流积雪产品MOD10A1与MYD10A1,并且年均云覆盖率最低。试验结果表明该方法可有效地减少云层对积雪判识的干扰,提升分类精度。

英文摘要:

Snow cover in Qinghai-Tibetan plateau(QT plateau)is very important to global climate change.Because of the complex topography and high altitude,the recognition accuracies of existing snow cover products in QT plateau are significantly lower than flat areas.This paper proposed a new method of snow cover recognition for QT plateau based on deep learning.The multispectral remote sensing data from Chinese meteorological satellite FY-3A and the multiple geographic elements information are put together as the data sources,the insitu snow depth measurements and existing snow cover products are used for selecting the labeled samples.A stacked denoising auto-encoders(SDAE)network was built and trained for feature extraction and classification,this network can be used as a classifier for distinguishing the snow cover from cloud and other snow-free surface features.The recognition results are verified by snow depth data of meteorological station observations,verification results show that the recognition accuracy of this method is significantly higher than the snow product FY-3A/MULSS,which is using the same remote sensing data source FY-3A,and slightly higher than the widely used snow products MOD10A1 and MYD10A1,and the cloud coverage rate of this method is the lowest.According to the validation results,this method can effectively improve the accuracy of snow cover recognition,and reduce the interference of clouds.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《测绘学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国测绘地理信息学会
  • 主编:杨元喜
  • 地址:北京市西城区三里河路50号
  • 邮编:100045
  • 邮箱:chxb@periodicals.net.cn
  • 电话:010-68531192
  • 国际标准刊号:ISSN:1001-1595
  • 国内统一刊号:ISSN:11-2089/P
  • 邮发代号:2-224
  • 获奖情况:
  • 中国科学技术协会精品科技期刊工程项目资助期刊(2...,中国国际影响力优秀学术期刊(2012年),第四届中国百种杰出学术期刊(2005年),科技部“中国精品科技期刊”(2008年、2011年、201...,中国科协优秀期刊,中国科协年度期刊内容和编校质量良好的13种期刊之...,中国测绘学会第一、第二届“全国优秀测绘期刊奖”...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰地学数据库,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),瑞典开放获取期刊指南,中国北大核心期刊(2000版)
  • 被引量:18477