提出了一种采用计算流体力学(CFD)计算的压力分布对活塞理论气动力进行静压修正的方法,将该方法应用到曲壁板的静气动弹性变形及颤振稳定性分析中,并与采用曲率修正活塞理论气动力的计算结果进行了对比。分析结果表明,采用本文提出的活塞理论气动力静压修正方法进行曲壁板的气动弹性分析,在圆柱曲壁板曲率较小的情况下,与采用曲率修正活塞理论气动力方法得到的静气动弹性变形、稳定性边界差别不大;而在曲率较大时,采用本文方法计算得到的曲壁板静气动弹性变形,其曲壁板靠近前缘部分被压的更低,而曲壁板的颤振稳定性边界更小,且这种差别随着圆柱曲壁板曲率的增加而不断增大。该方法突破了曲率修正活塞理论的小曲率限制,扩大了活塞理论气动力在曲壁板颤振分析中的适用范围。
A modification method is proposed for piston theory aerodynamics of a curved panel using its static pressure calculated by computational fluid dynamics(CFD).This static pressure modified piston theory aerodynamics is then applied to the analysis of the static aeroelastic deformation and flutter stability of a cylindrically curved panel.A comparison is made between the results obtained using the existing curvature modified piston theory aerodynamics and the present static pressure modified piston theory aerodynamics,which shows that when the curvature of a curved panel is small,the static aeroelastic deformations and flutter stability boundaries obtained by both methods demonstrate little difference,while for a curved panel with a large curvature,the region near the leading edge which is pressed lower by the present method is larger and the flutter stability boundary is smaller as compared with those obtained by the curvature modified method,and the discrepancy increases with the increasing of curvature.The proposed method breaks through the small curvature limitation of the existing curvature modified method and enlarges the application range of piston theory in the flutter analysis of curved panels.