以空间一维的复Ginzburg-Landau方程为模型,研究了利用系统变量随时间的变化率作为反馈控制信号控制偏微分方程系统中时空混沌的可能性.通过理论分析和数值模拟方法讨论了控制参数与可控性所满足的关系,解释了不同目标态时临界控制参数的尺寸效应.
The usual linear variable feedback control method is extended to the speed feedback approach in the study of controlling spatiotemporal chaos in the one-dimensional complex Ginzburg-Landau equation. The controllabilities in diverse systems with different sizes and target periodic states are investigated by theoretical analysis and numerical simulation.