位置:成果数据库 > 期刊 > 期刊详情页
基于人工鱼群和分形维数融合SVM的空气质量预测方法
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]合肥工业大学管理学院,合肥230009, [2]合肥工业大学过程优化与智能决策教育部重点实验室,合肥230009
  • 相关基金:国家863云制造主题项目(No.2015AA042101)、国家自然科学基金重大研究计划培育项目(No.91546108)、国家自然科学基金重点项目(No.71490725)、国家自然科学基金项目(No.71271071)、国家自然科学基金青年基金项目(No.71301041)资助
中文摘要:

为了克服现有方法在空气质量预测上存在的缺点,文中通过采用改进的离散型人工鱼群算法,并结合分形维数,提出基于人工鱼群和分形维数融合SVM的空气质量预测方法.首先对人工鱼群算法聚群、觅食行为及移动方式进行离散化改进,引入跳出局部最优策略和并行机制.然后将改进的离散型人工鱼群算法结合分形维数,约简空气质量数据集.最后采用基于高斯核SVM建立空气质量预测模型.在北京、上海和广州近2年的空气质量数据上的实验表明,文中方法预测性能较优,具有较高的稳定性和可信性.

英文摘要:

To overcome defects of the existing air quality prediction method, an air quality prediction method based on fish swarm and fractal dimension is proposed. Firstly, the artificial fish are processed by discretization, the swarming and foraging behaviors and the moving way are improved, and the parallel mechanism and a strategy for overcoming local optimum are introduced. Secondly, air quality datasets are reduced by the improved discrete artificial fish swarm algorithm and the fractal dimension. Finally, an air quality prediction model is built by using Gaussian kernel SVM. Experiments are conducted on air quality datasets of Beijing, Shanghai and Guangzhou for nearly two years, and the experimental results show the relatively high stability and credibility of the proposed prediction method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169