无线传感器网络(WSNs)中的传感器件容易失效而导致测量数据不准确,因而,高效、实用的故障检测算法对于保证WSNs的感知质量非常重要.提出一种基于聚类中值比较(CBMC)的故障检测算法.不同于传统的中值比较的思想,该算法引入聚类方法对待检测节点的邻居节点测量数据进行分组,根据分组信息计算该节点状态.仿真实验表明:CBMC算法具有较高的故障检测率(DR)和较低的故障误检率(FPR).
The sensors in WSNs are prone to failure and results in inaccurate measurements,efficient and practical fault detection algorithms is very important to guarantee sensing quality of WSNs.A fault detection algorithm with clustering-based medium comparison (CBMC) is proposed.Different from traditional medium comparison idea,CBMC introduces clustering approach to determine the status by grouping and computing the measurements of neighbor nodes.Simulation results show that the algorithm achieves a high fault detection rate (DR) and a low false positive rate(FPR).