位置:成果数据库 > 期刊 > 期刊详情页
基于QPSO算法的图像颜色分割
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江南大学信息工程学院,江苏无锡214122
  • 相关基金:国家自然科学基金资助项目(60474030)
中文摘要:

目前不同种类的纹理区域组成的彩色图像分割还是一个难点。当一幅图像中包含相似的和(或)非固定的纹理区域时,难以计算出精确的纹理区域和分割区域的最优数目。描述了基于量子行为的微粒群优化算法(QPSO)的图像颜色分割方法,把图像分割问题看作一个最优化问题并且采用QPSO的进化策略聚类颜色特征空间中的区域。QPSO不仅参数个数少、随机性强,并且能覆盖所有解空间,保证算法的全局收敛。给出了三幅图像的分割效果,证明了QPSO算法在自动的和无监督的纹理分割上具有很好的效果。

英文摘要:

At present, Segmentation of a color image composed of different kinds of texture regions is still a difficulty. Computing the exact texture fields and the optimum number of segmentation areas in an image is difficult, when it contains similar and/or unstationary texture fields. In this paper, describing image color segmentation by QPSO. We formulate the segmentation problem upon such images as an optimization problem and adopt evolutionary strategy of QPSO for the clustering of regions in color feature. Not only parameters of QPSO are few and randomicity of QPSO is strong, but also QPSO covers with all solution space and guarantee global convergence of algorithms. Three images results of segmentation are presented and demonstrate the efficiency of QPSO algorithms to automatic and unsupervised texture segmentation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049